Structured Prediction of 3D Human Pose with Deep Neural Networks

نویسندگان

  • Bugra Tekin
  • Isinsu Katircioglu
  • Mathieu Salzmann
  • Vincent Lepetit
  • Pascal Fua
چکیده

Most recent approaches to monocular 3D pose estimation rely on Deep Learning. They either train a Convolutional Neural Network to directly regress from image to 3D pose, which ignores the dependencies between human joints, or model these dependencies via a max-margin structured learning framework, which involves a high computational cost at inference time. In this paper, we introduce a Deep Learning regression architecture for structured prediction of 3D human pose from monocular images that relies on an overcomplete auto-encoder to learn a high-dimensional latent pose representation and account for joint dependencies. We demonstrate that our approach outperforms state-of-the-art ones both in terms of structure preservation and prediction accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Human Pose Estimation from Monocular Images with Deep Convolutional Neural Network

In this paper, we propose a deep convolutional neural network for 3D human pose estimation from monocular images. We train the network using two strategies: 1) a multi-task framework that jointly trains pose regression and body part detectors; 2) a pre-training strategy where the pose regressor is initialized using a network trained for body part detection. We compare our network on a large dat...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map

Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human body joints, via 2D convolutional neural networks (CNNs). The first weakness of this approach is the presence of perspective distortion in the 2D dept...

متن کامل

An adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...

متن کامل

Towards Good Practices for Deep 3D Hand Pose Estimation

3D hand pose estimation from single depth image is an important and challenging problem for human-computer interaction. Recently deep convolutional networks (ConvNet) with sophisticated design have been employed to address it, but the improvement over traditional random forest based methods is not so apparent. To exploit the good practice and promote the performance for hand pose estimation, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1605.05180  شماره 

صفحات  -

تاریخ انتشار 2016